x^3-64/x^3+64

Simple and best practice solution for x^3-64/x^3+64 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for x^3-64/x^3+64 equation:


D( x )

x^3 = 0

x^3 = 0

x^3 = 0

1*x^3 = 0 // : 1

x^3 = 0

x = 0

x in (-oo:0) U (0:+oo)

x^3-(64/(x^3))+64 = 0

x^3-64*x^-3+64 = 0

t_1 = x^3

1*t_1^1-64*t_1^-1+64 = 0

1*t_1^1-64*t_1^-1+64*t_1^0 = 0

(1*t_1^2+64*t_1^1-64*t_1^0)/(t_1^1) = 0 // * t_1^2

t_1^1*(1*t_1^2+64*t_1^1-64*t_1^0) = 0

t_1^1

t_1^2+64*t_1-64 = 0

t_1^2+64*t_1-64 = 0

DELTA = 64^2-(-64*1*4)

DELTA = 4352

DELTA > 0

t_1 = (4352^(1/2)-64)/(1*2) or t_1 = (-4352^(1/2)-64)/(1*2)

t_1 = (16*17^(1/2)-64)/2 or t_1 = (-16*17^(1/2)-64)/2

t_1 in { (-16*17^(1/2)-64)/2, (16*17^(1/2)-64)/2}

t_1 = (-16*17^(1/2)-64)/2

x^3-((-16*17^(1/2)-64)/2) = 0

1*x^3 = (-16*17^(1/2)-64)/2 // : 1

x^3 = (-16*17^(1/2)-64)/2

x^3 = (-16*17^(1/2)-64)/2 // ^ 1/3

x = ((-16*17^(1/2)-64)^(1/3))/(2^(1/3))

t_1 = (16*17^(1/2)-64)/2

x^3-((16*17^(1/2)-64)/2) = 0

1*x^3 = (16*17^(1/2)-64)/2 // : 1

x^3 = (16*17^(1/2)-64)/2

x^3 = (16*17^(1/2)-64)/2 // ^ 1/3

x = ((16*17^(1/2)-64)^(1/3))/(2^(1/3))

x in { ((-16*17^(1/2)-64)^(1/3))/(2^(1/3)), ((16*17^(1/2)-64)^(1/3))/(2^(1/3)) }

See similar equations:

| w/6+1=-6.68 | | 4.3x=-10.75 | | 18-3x=15x+16 | | 42+26= | | b/13=-9 | | 50=(x)(0.05)(2) | | 16.9-5v=4.4 | | 2/5*(3*0,55+2)-4,55/2=0,5*(13-48,9/5)+3/10 | | b=2(42) | | 2r-4=-4 | | -15.9=w/4-3.1 | | (8x+6)2=27 | | -2v=14/9 | | x+2w=3t-2 | | x^2-1.0x+0.25=0 | | 2/5*(3*0,55+2)-4,55/2=0,5 | | 194=x+2x+(x+26) | | -5/2u=25 | | 2x+7y=-1 | | 999x=x+998 | | 23=7+y/4 | | 1.2*x=48 | | 4r+7=33 | | 120x+80-5x+20=650+20x-500+3 | | -13=3v+5 | | -3/7=6/x+6 | | x+21=3x-79 | | 4w-6=-34 | | 5=-3m-1 | | ln(x)+ln(x+6)=ln(13/4) | | 67-w=219 | | 84=-x+227 |

Equations solver categories